Adverse Biological Effect of TiO2 and Hydroxyapatite Nanoparticles Used in Bone Repair and Replacement

نویسندگان

  • Jiangxue Wang
  • Liting Wang
  • Yubo Fan
چکیده

The adverse biological effect of nanoparticles is an unavoidable scientific problem because of their small size and high surface activity. In this review, we focus on nano-hydroxyapatite and TiO₂ nanoparticles (NPs) to clarify the potential systemic toxicological effect and cytotoxic response of wear nanoparticles because they are attractive materials for bone implants and are widely investigated to promote the repair and reconstruction of bone. The wear nanoparticles would be prone to binding with proteins to form protein-particle complexes, to interacting with visible components in the blood including erythrocytes, leukocytes, and platelets, and to being phagocytosed by macrophages or fibroblasts to deposit in the local tissue, leading to the formation of fibrous local pseudocapsules. These particles would also be translocated to and disseminated into the main organs such as the lung, liver and spleen via blood circulation. The inflammatory response, oxidative stress, and signaling pathway are elaborated to analyze the potential toxicological mechanism. Inhibition of the oxidative stress response and signaling transduction may be a new therapeutic strategy for wear debris-mediated osteolysis. Developing biomimetic materials with better biocompatibility is our goal for orthopedic implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydroxyapatite from Fish for Bone Tissue Engineering: A Promising Approach

Natural or synthetic hydroxyapatite (HA) has been frequently used as implant materials for orthopaedic and dental applications, showing excellent bioactivity, adequate mechanical rigidity and structure, osteoconductivity and angiogenic properties, no toxicity, and absence of inflammatory or antigenic reactions. HA can be easily synthesized or extracted from natural sources, such as bovine bone....

متن کامل

ساخت و مشخصه‌یابی نانوبیوسرامیک نوین ویلمایت برای ترمیم نواقص استخوانی

The positive effect of Si and Zn ions on bone formation and metabolism has already been confirmed. The aim of this study was preparation and characterization of Willemite (Zn2SiO4) for the repair of bone defects. Willemite was prepared through solid state reaction. Phase analysis and chemical compositions were investigated. The zeta potential of the nanoparticles was determined in physiological...

متن کامل

The Evaluation of Radio-sensitivity Effect of Hydroxyapatite Nanopartical on MCF-7 and Fibroblast Cell Line

Introduction: Hydroxyapatite nanoparticles inhibit the growth of various cancer cells. The inhibitory effect of these nanoparticles on breast cancer cells of mcf7 has also been reported. However, no studies have been done on the effect of the hydroxyapatite nanoparticles on the radiation sensitivities of the MCF7 cell Line. Our goal in this study is to investigate the effect of...

متن کامل

بررسی سمیت سلولی نانوهیدروکسی آپاتیت بر رده سلولی اپی‌تلیوم دهان انسان: یک مطالعه آزمایشگاهی

Background: Hydroxyapatite nanoparticles have a more surface contact and solubility than conventional hydroxyapatite. Hydroxynanoparticles enhances the biological and mechanical properties of new regenerated tissues. The hydroxyapatite nanoparticles have received attention as a new and effective osseous graft for using as scaffolds in bone regeneration. The reports on hydroxyapatite nanoparticl...

متن کامل

In Vitro behavior of mechanically activated nanosized Si-Mg-doped fluorapatite

Hydroxyapatite (HA) is perhaps the most attractive material for bone repair, replacement and regeneration, due to its chemical composition and crystallographic structure which are similar to those of natural bone mineral. However, replacement of various elements and compounds in HA, could improve biological properties of this material. The aim of this study was preparation, characterization and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016